众所周知,中学生时间紧任务重,很多学生经常感到力不从心,常常会觉得是自己智商不够用。因此,会有很多学生把吃饭和睡觉的时间一再压缩用来学习。而事实的真相是:中学学习拼的并不是智商,而是时间管理。那么,初中数学怎样学才能让短时间内学到更多的知识呢?下面这些数学公式你要记住!
11
分式混合运算法则:
分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);
乘法进行化简,因式分解在先,分子分母相约,然后再行运算;
加减分母需同,分母化积关键;找出较简公分母,通分不是很难;
变号需要两处,结果要求较简.
12
分式方程的解法步骤:
同乘较简公分母,化成整式写清楚,
求得解后须验根,原(根)留、增(根)舍,别含糊.
13
较简根式的条件:
较简根式三条件,号内不把分母含,
幂指数(根指数)要互质、幂指比根指小一点.
14
特殊点的坐标特征:
坐标平面点(x,y),横在前来纵在后;
(+,+),(-,+),(-,-)和(+,-),四个象限分前后;
x轴上y为0,x为0在y轴.
象限角的平分线:
象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵却相反.
平行某轴的直线:
平行某轴的直线,点的坐标有讲究,
直线平行x轴,纵坐标相等横不同;
直线平行于y轴,点的横坐标仍照旧
15
对称点的坐标:
对称点坐标要记牢,相反数位置莫混淆,
x轴对称y相反,y轴对称x相反;
原点对称较好记,横纵坐标全变号.
16
自变量的取值范围:
分式分母不为零,偶次根下负不行;
零次幂底数不为零,整式、奇次根全能行.
17
函数图象的移动规律:
若把一次函数的解析式写成y=k(x+0)+b,
二次函数的解析式写成y=a(x+h)2+k的形式,
则可用下面的口诀
“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”
18
一次函数的图象与性质的口诀:
一次函数是直线,图象经过三象限;
正比例函数更简单,经过原点一直线;
两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,
k为正来右上斜,x增减y增减;
k为负来左下展,变化规律正相反;
k的值越大,线离横轴就越远
19
二次函数的图象与性质的口诀:
二次函数抛物线,图象对称是关键;
开口、顶点和交点,它们确定图象现;
开口、大小由a断,c与y轴来相见;
b的符号较特别,符号与a相关联;
顶点位置先找见,y轴作为参考线;
左同右异中为0,牢记心中莫混乱;
顶点坐标较重要,一般式配方它就现;
横标即为对称轴,纵标函数较值见.
若求对称轴位置, 符号反,一般、顶点、交点式,不同表达能互换.
20
反比例函数的图象与性质的口诀:
反比例函数有特点,双曲线相背离得远;
k为正,图在一、三(象)限,k为负,图在二、四(象)限;
图在一、三函数减,两个分支分别减.
图在二、四正相反,两个分支分别增;
线越长越近轴,永远与轴不沾边.