欢迎光临云南秦学教育官网~
高考数学|三角函数的性质及应用知识点整理分享
高中 来源:网络 编辑:小新 2018-10-16 11:00:49

  三角函数的内容是高考数学的常考知识点,考生对这块的知识一定要重点关注和学习,三角函数的图象和性质是历年高考必考的内容,在高考中多以选择题或填空题的形式出现,下面秦学教育昆明一对一辅导小编为大家整理分享三角函数的性质及应用知识点,高三学生注意参考学习一下,一起来看看吧!

高考数学|三角函数的性质及应用知识点整理分享

  命题的重点

  (1)周期问题,重点是利用函数的最值、零点、图象的对称性等确定周期,其中根据函数图象的对称性求函数周期是热点。

  (2)单调性问题,主要涉及三类问题,一是判断函数在指定区间上的单调性,多为选择题;二是求定义域或指定区间上的单调区间,多为选择题、填空题,或解答题中的某一问;三是由函数的单调性求参数,多以选择题或填空题的形式进行考查,属于中等难度。

  (3)最值问题,以指定区间上的最值为重点,多为填空题或解答题。

  (4)对称性问题,求解函数图象的对称中心、对称轴等,有时与函数图象的平移变换综合命题。

  周期问题公式莫忘绝对值,对称抓住“心”与“轴”。

  (1)公式法求周期:

  ①正弦型函数f(x)=Asin(ωx+φ)+B的最小正周期T=2π/|ω|;

  ②余弦型函数f(x)=Acos(ωx+φ)+B的最小正周期T=2π/|ω|;

  ③正切型函数f(x)=Atan(ωx+φ)+B的最小正周期T=π/|ω|。

  (2)对称性求周期:

  ①两条对称轴距离的最小值等于T/2;

  ②两个对称中心距离的最小值等于T/2;

  ③对称中心到对称轴距离的最小值等于T/4。

  (3)特征点法求周期:

  ①两个最大值点横坐标之差的绝对值的最小值等于T;

  ②两个最小值点横坐标之差的绝对值的最小值等于T;

  ③最大值点与最小值点横坐标之差的绝对值的最小值等于T/2。

  由于最值点与函数图象的对称轴相对应,则特征点法求周期实质上就是由对称性求解周期。

  例题

  已知函数f(x)=2sin(ωx+π/3)的图象的一个对称中心为(π/3,0),其中ω为常数,且ω∈(1,3),若对任意的实数x,总有f(x1)≤f(x)≤f(x2),则|x1-x2|的最小值是( )

  A.1 B.π/2 C.2 D.π

  【思路点拨】

  先根据对称中心得到ω的关系式,再根据其取值范围即可求得ω的值,显然使得不等式恒成立的x1,x2分别为该函数的最小值点与最大值点,所以|x1-x2|的最小值就是该函数最小正周期的一半,从而即可求解。

  【解析】

  因为函数f(x)=2sin(ωx+π/3)的图象的一个对称中心为(π/3,0),

  所以π/3ω+π/3=kπ,k∈Z

  所以ω=3k-1,k∈Z

  由ω∈(1,3),得ω=2.

  由题意得|x1-x2|的最小值为函数的半个最小正周期,即T/2=π/ω=π/2,故选B。

  【解题技巧】

  本题中由对称中心和ω的取值范围即可

  确定ω的值.而不等式f(x1)≤f(x)≤f(x2)恒成立,说明f(x1)是函数的最小值,f(x2)是函数的最大值,所以直线x=x1与x=x2是该函数图象的两条对称轴,显然,|x1-x2|的最小值就是两条对称轴距离的最小值,即1/2T。

*本文内容来源于网络,由秦学团队整理编辑发布,如有侵权请联系客服删除!
文章标签: 高考数学
上一篇:高一学习你要注意什么呢?高一学生参考! 下一篇:语文考试中的古诗词习题应该如何学习?
  • 热门课程
  • 热门资讯
  • 热门资料
  • 热门福利
  • 暂无内容
秦学教育
无论您在哪里,秦学教育都会为您贴心服务!
咨询报名电话:400-000-0007
秦学小Q
咨询我
背景计算器
课程费用在线咨询
免费报价查询
亲爱的家长(学生)您好:
恭喜您,您已经预约成功!
同时你将获得一次免费学习测评机会
+年级学科资料