俗话说:工欲善其事,必先利其器。意思是说无论做什么事,都要事先做好准备。考试也是一样。要想取得好成绩,除了平时努力学习,打好基础,增强能力外,期末复习方法也很关键,伊顿教育的小编为同学们整理分享了在考试较后阶段我们学习的一些方法,复习方法多种多样,我们应该根据自己的实际情况,选取科学、的复习方法。
二元一次方程公式
设ax+by=c,
dx+ey=f,
x=(ce-bf)/(ae-bd),
y=(cd-af)/(bd-ae),
其中/为分数线,/左边为分子,/右边为分母
解二元一次方程组
一般地,使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。
求方程组的解的过程,叫做解二元一次方程组。
消元
将方程组中的未知数个数由多化少,逐一解决的想法,叫做消元思想。如:{5x+6y=72x+3y=4,变为{5x+6y=74x+6y=8
消元的方法
代入消元法。
加减消元法。
顺序消元法。(这种方法不常用)
#p#副标题#e#
消元法的例子
(1)x-y=3
(2)3x-8y=4
(3)x=y+3
代入得(2)
3×(y+3)-8y=4
y=1
所以x=4
这个二元一次方程组的解 x=4
y=1
教科书中没有的,但比较适用的几种解法
(一)加减-代入混合使用的方法.
例1,13x+14y=41(1)
14x+13y=40(2)
解:(2)-(1)得
x-y=-1
x=y-1(3)
把(3)代入(1)得
13(y-1)+14y=41
13y-13+14y=41
27y=54
y=2
把y=2代入(3)得
x=1
所以:x=1,y=2
特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元。
#p#副标题#e#
(二)换元法
例2,(x+5)+(y-4)=8
(x+5)-(y-4)=4
令x+5=m,y-4=n
原方程可写为
m+n=8
m-n=4
解得m=6,n=2
所以x+5=6,y-4=2
所以x=1,y=6
特点:两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程也是主要原因。
(3)另类换元
例3,x:y=1:4
5x+6y=29
令x=t,y=4t
方程2可写为:5t+6*4t=29
29t=29
t=1
所以x=1,y=4